Original Papers
25 September 2013

dCTP pyrophosphohydrase exhibits nucleic accumulation in multiple carcinomas

Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
3050
Views
656
Downloads
414
HTML

Authors

Nucleoside triphosphate pyrophosphohydrolase (NTP-PPase) functions as one of the mechanisms to guarantee the fidelity of DNA replication through the cleavage of non-canonical nucleotides into di- or monophosphates. Human NTP-PPase is poorly understood and investigated. In the present study, by using tissue microassays with the paired cancer and adjacent regions, we found that with the prevalent expression of dCTP pyrophosphohydrase (DCTPP1) in the cytosol and nucleus in tumors investigated, DCTPP1 was inclined to accumulate in the nucleus of cancer cells compared to the paired adjacent tissue cells in multiple carcinoma including lung, breast, liver, cervical, gastric and esophagus cancer. More significantly, the higher DCTPP1 expression in the nucleus of lung, gastric and esophagus cancer cells was associated with histological subtypes. The nucleic accumulation of DCTPP1 was apparently observed as well when cancer cell line MCF-7 was treated with H2O2 in vitro. Considering the roles of DCTPP1 on restricting the concentration of non-canonical nucleotides in the nucleotide pool, accumulation of DCTPP1 in the nucleus of cancer cells might suffice for maintaining the proper DNA replication in order to fulfill the requirement for the survival and proliferation of tumor cells.


Altmetrics

Downloads

Download data is not yet available.

Citations

Supporting Agencies

Shanghai Municipal Health Bureau (20114195) and Shanghai Municipal Education Commission (13ZZ083).

How to Cite



dCTP pyrophosphohydrase exhibits nucleic accumulation in multiple carcinomas. (2013). European Journal of Histochemistry, 57(3), e29. https://doi.org/10.4081/ejh.2013.e29